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An analytic solution is not available for the diffraction of elastic waves by wedges; 
however, numerical solutions of fmite-difference type are available for selected wedge 
angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured 
on two-dimensional seismic models for stress-free wedges with wedge angles, 0, , of 10, 
30, 60, 90 and 120”. The conversion coefficients show two broad peaks and a minimum 
as a function of the angle between the wedge face and the direction of the incident P-wave. 
The minimum occurs for the P wave incident parallel to the wedge face and one maximum 
is near an incidence angle of 90” to the wedge face. The amplitude of this maximum, re- 
lative to the other, decreases as the wedge angle increases. The asymmetry of the conversion 
coefficients, C&0; 0,), relative to parallel incidence (0 = 0) increases as the wedge angle 
increases. The locations of the maxima and the minimum as well as the asymmetry can be 
explained qualitatively. The conversion coefficients are measured with an accuracy of t 5 % 
in those regions where there are no interfering waves. A comparison of the data for the 10” 
wedge with the theoretical results for a half plane (0” wedge) shows good correlation. 

INTRODUCTION 

The theoretical problems of the diffraction of elastic waves by stress-free or rigid 
wedges of arbitrary wedge angle are still among the classical unsolved problems in 
elastodynamics. Only two special cases have been solved. The case of the stress-free 
“wedge” with 180” wedge angle (the half-space problem) has been solved by Lamb [l] 
and the cases of stress-free and rigid wedges with 0” wedge angle (diffraction by half- 
planes) have been solved by Fridman [2, 31, Maue [4], Roseau [5, 61, de Hoop [7], and 
Miles [8]. These special cases are two limiting cases and must be contained in the 
solution for a wedge of arbitrary wedge angle. 

Some success has been achieved in explaining some of the features of wedge problems 
by approximate solutions. These deal primarily with the reflection and transmission 
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coefficients of Rayleigh waves at wedge corners. Lapwood [9] used an iterative method 
to obtain an approxmate expression for the transmission of a Rayleigh pulse around a 
corner (270” wedge). This technique was extended to higher order by Viswanathan 
er al. [lo] to achieve better correlation of theory and experiment. Kane and Spence 
[l l] and Hudson and Knopoff [12] obtained similar first-order approximations for 
arbitrary wedge angles while using different approaches. Ma1 and Knopoff [13] 
extended the latter work to a higher-order approximation and achieved a better corre- 
lation of theory and experiment. McGarr and Alsop [14] used an approximate 
variational method to determine the transmission of Rayleigh waves past a step 
discontinuity and across the interface between two welded quarter spaces of different 
elastic properties. They also performed modeling experiments to test their analytic 
results. 

More recently, numerical solutions to wedge problems have been obtained by 
finite-difference techniques applied to the elastodynamic differential equations and 
the boundary and initial conditions. Alterman and Rotenberg [ 151 treated the problem 
of elastic waves in a stress-free quarter space (i.e., a wedge of 270”) with the source 
located along the bisector of the wedge angle. The latter condition increases the 
symmetry of the problem and lessens the demands on computer memory to achieve 
the solution. Alterman and Lowenthal [ 161 treated both the quarter space (270” wedge) 
and three-quarter space (90° wedge) by finite-difference methods. The numerical 
solutions are given as plots of the displacements as functions of time at various points 
in the elastic medium and on the wedge faces. Ottaviani [17] obtained numerical 
solutions by the finite-difference method for the quarter space, again with the source 
along the diagonal, and for welded quarter spaces. He also performed model studies 
to compare the numerical results with experiments. Musasinghe and Farnell [18] 
obtained numerical solutions for a quarter space and a step discontinuity on a surface 
and extended the results of McGarr and Alsop [14]. They also compare their results for 
the step discontinuity with the approximate analytic solutions of Ma1 and Knopoff [ 191. 

The reflection and transmission coefficients for Rayleigh waves have been measured 
experimentally using seismic models by De Bremaecker [20], Victorov [21], Knopoff 
and Gangi [22], Gangi [23], and Pilant, et al. [24]. In the latter reference both the 
amplitudes and the phases of these coefficients were measured. In addition, photo- 
elastic studies of wave propagation in a quarter space have been made by Lewis and 
Dally [25] and Henzi and Dally [26]. The case of a step discontinuity was investigated 
photoelastically by Dally and Lewis [27]. The advantage of this method is that the 
stresses in the complete elastic medium can be determined. The disadvantage is that 
the data reduction process is lengthy in that it requires that interference fringes be 
counted and measured to determine stresses. Also, there are few materials that have 
the necessary stress-dependent birefringence. However, it gives a wealth of data from 
a single experiment when the data are reduced and these data can be compared with 
the results of the numerical (finite-difference) methods. The amplitudes of the waves 
diffracted by the wedge tip and faces have been measured by Gangi [23, 281 and 
Wesson [29]. In particular, the conversion coefficient for P waves converted to 
Rayleigh waves at the wedge tip have been measured for wedge angles of 60 and 90” 
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[28] and for wedge angles of 10, 30, 60, 90, and 120” [29]. These latter results have 
been reanalyzed and are reported here to provide additional data as check points for 
numerical and theoretical calculations. 

EXPERIMENTAL RESULTS 

The data were obtained using the standard “two-dimensional” seismic-modeling 
technique [30]. Circles 30 cm in diameter were cut from 1.6-mm (l/16-in.) thick 
aluminum sheets and wedges of 10, 30, 60, 90, and 180” were cut out of the circles 
(see Fig. 1). This geometry provides a convenient shape both for the acquisition and 
reduction of the data. The measured (thin-plate) velocities were: 5.55 f 0.05 km/set 
for the P waves, 3.27 rt 0.05 km/set for the S waves and 2.99 f 0.05 kmlsec for the 
Rayleigh waves. These velocities correspond to a “two-dimensional” Poisson’s 
ratio of 0.245. The source transducer was placed on the circular edge of the model 
and a receiving transducer was fixed on the upper wedge face as shown in Fig. 1. 
The source transducer was vertically polarized and gives rise to predominantly radial 
displacements. The receiving transducer was also vertically polarized and measured 
displacements normal to the wedge surface. The receiving transducer was placed at 
point “a” which is approximately half way between the wedge corner and the end of 
the wedge face (e in Fig. l), that is, a s ijr. 

e 

FIG. 1. The seismic model. 
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a/r =0.5, p/d = I/J 

I 

-180 -120 -60 0 60 120 It30 
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FIG. 2. Travel-time curves for the seismic model; the source on the circular periphery and the 
receiver on the wedge face at a/r = 0.5 for /~/LX = 3Fi8, (I = a. 

With this geometry, the P wave converted into a Rayleigh wave at the wedge corner 
(c in Fig. 1) has the same travel time to the receiver for the source anywhere on the 
circular edge. There are a large number of possible waves in this model and their 
travel times are plotted in Fig. 2. The notation used to identify the waves is similar 
to that used previously [28] where P and S represent direct body waves from the 
source to the receiver, PP and SS represent waves reflected from the curved surface 
and detected at the receiver, PS is the P wave converted into an S wave at the curved 
surface, while PcP, PCS, PcR are waves, converted at the wedge corner, which travel 
along the wedge face to the receiver and are due to an incident P wave. ScP, SC& and 
ScR are the waves converted at the wedge corner due to an S wave from the source. 
PeP, PeS, PeR represent waves generated at the end of the wedge face (point e in 
Fig. 1) due to a direct P wave from the source. The other waves are labeled consistent 
with this convention; for example, the wave labelled PcPeP is the wave that travels as 
a P wave (P) from the source to the wedge corner (c), is “converted” into a P wave 
which travels along the upper wedge face to its end (e) and returns as a P wave along 
the wedge face from the end (e) to the receiver. 

The travel-time curves in Fig. 2 are computed for a Poisson’s ratio of 0.25 and 
for the receiver located at the midpoint of the upper wedge face. From the figure, it is 

581129/3-s 
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seen that the event of interest, the PcR wave, has no interference from other events for 
angles of incidence, 8, ranging from &, - 180” (when the source is at the intersection of 
the lower wedge face and the circular boundary) to approximately +90” where the 
waves PeP and Shave arrival times equal to that of PcR. The wave PCS immediately 
precedes the PcR wave, but its amplitude is small and does not interfere appreciably 
with PcR. The waveform of the PcR wave can be closely approximated by the second 
derivative of a Gaussian wavelet (see Fig. 3) and has its major frequency content 
between 50 to 300 KHz. The duration of the pulse is about 7 psec and the time 
separation between the arrival times of PCS and PcR is about 4.5 psec; consequently, 
the pulses associated with PCS and PcR are sufficiently well separated so that they 
can be individually seen. The amplitude of the PCS pulse was always well below one- 
tenth that of the PcR pulse and, therefore, does not interfere strongly with the latter. 

FIG. 3. The assumed input wavelet, f(t) = [0.02t2 - I] exp(-P/100), the Hilbert transform of 
&j(t), namely &z(t) = l/t, and the convolution of f(t) and ah(t), g(t); g(i) is the associated function 
off (0. 

The waveform of PcR changes as the angle of incidence of the P wave is varied. 
This occurs because there are two contributions to the PcR wave, one is a reproduc- 
tion of the incident P-wave waveform and the other is its alliedfunction (or Hilbert 
transform) [9, 221. To ameliorate the effects of the waveform change, the “measured” 
amplitude of the pulse is taken to be the sum of the peak-to-peak amplitudes between 
the major lobe and the two adjacent minor lobes as shown in Fig. 3; that is, (a2 - as) + 

(4 - ad. 
The results of these measurements for wedge angles, B0 , of 10, 30, 60, 90, and 120” 

are given in Fig. 4, 5, 6, 7, and 8 respectively. From the plotted data points, it can be 
seen that, except for a few points, the scatter is generally less than &.5x in those 
regions where there is no interference; that is, for angles of incidence, 8, less than 
+60”. The P-wave to Rayleigh-wave conversion coefficients have the following 
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FIG. 4. The measured P-wave to Rayleigh-wave conversion coefficient, CPR , for the 10” stress- 
free wedge and the corresponding theoretical curve for the stress-free, half-plane problem 181. 
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FIG. 5. The measured P-wave to Rayleigh wave conversion coefficient, CPR , for the 
free wedge. 
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FIG. 6. The measured P-wave to Rayleigh wave conversion coefficient, Cpa , for the 60” stress- 
free wedge. 
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FIG. 7. The measured P-wave to Rayleigh wave conversion coefficient, CUR, for the 90” stress- 
free wedge. 
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FIG. 8. The measured P-wave to Rayleigh wave conversion coefficient, CPR , for the 120” stress- 
free wedge. 

general characteristics: (i) They show two broad maxima for angles of incidence near 
190” and a minimum near 0”. They become small at 8, - 180” and +180”; these 
angles correspond to grazing incidence of the direct P ray on the wedge faces. (ii) The 
magnitudes of the conversion coefficients decrease as the wedge angle increases. This 
can be anticipated because the conversion coefficient must go to zero as the wedge 
angle goes to 180”. (iii) The data are more symmetric about 0 = 0 for small wedge 
angles and the asymmetry increases with increasing wedge angle. The symmetry of 
the data for small wedge angles (0, = 10 and 30”) is consistent with the theoretical 
results obtained for the half-plane (0, = 0’) case [2, 3, 4, 5, 6, 7, 81 in which it is 
shown that the conversion coefficient is exactly symmetric about 8 = 0”. 

The conversion coefficients shown in Figs. 4 to 8 are normalized with respect to 
the P-wave amplitude at the wedge corner. This is consistent with the earlier work [28] 
reported for wedge angles of 60 and 90“. Except in the neighborhood of 8 = O”, the 
data in Figs. 6 and 7, corresponding to B,, = 60 and 90”, are well within 10 % of the 
values reported earlier [28]. The present data have a sharper and deeper minimum 
near 0 = 0” for the 60” wedge compared to the broader and shallower minimum of 
the earlier data. On the other hand, the present data near 0 = 0” for the 90” wedge 
have a broader and shallower minimum than the earlier data. That is, the character 
of the minimum for the 60” wedge shown here is very similar to the character of the 
minimum for the 90” wedge reported earlier. The same holds true for the present data 
for the 90” wedge and the earlier data for the 60” wedge. This may not be surprising 
and is probably due to the fact that the amplitudes are smallest in these regions for 
both wedge angles. In obtaining the data for a particular wedge angle, all gains and 
signal strengths were held constant throughout the complete range of 0 values. The 
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cuspate behavior for the minimum near 6 = 0” is probably the correct one because 
that behavior occurs most consistently for the other wedge angles and it is the behavior 
predicted by the theory for the 0, == 0” wedge or half plane. 

The general characteristics of these curves can be explained in terms of a simple 
physical argument given previously [28]. That is, the minimum near 0” is due to the 
fact that the P-wave motion of the incident wave is radial and the stress-free boundary 
condition on the upper wedge surface will be satisfied by the incident wave without 
requiring additional reflected and/or diffracted waves. That there is scattered P-, 
S- and R-wave energy for 19 = 0” is due to the singularity introduced by the wedge 
corner. The corner acts as a virtual source and gives rise to the PcP, PCS and PcR 
waves. On the other hand, the maximum at 0 = 90” would be anticipated because the 
incident wave is normally incident on the wedge face and a large reaction (in the form 
of the reflected P wave) is induced to satisfy the stress-free boundary condition. 
Because of the discontinuous nature of the reflected wave and the direct wave near 
the wedge corner, there will be a large virtual source at the wedge corner. The same 
consideration would hold for 19 = -90”. Tn addition, large virtual sources at the 
wedge corner could be anticipated when the wave is normally incident on the lower 
wedge face, i.e., when 0 == 8, - 90” and 19” = B, A 90” for the same reason, However, 
the effect on the upper wedge surface in these cases would probably be smaller than 
for 0 = ~90”. The asymmetry in the conversion coefficient about 6’ == 0” would be 
anticipated because of this latter effect. 

While the above argument gives some physical feeling for the correctness of the 
measured conversion coefficients, it does not give quantitative results that can be 
compared with the measured data. To achieve a quantitative comparison, it is neces- 
sary to have theoretical results or finite-difference numerical data. 

COMPARISON OF THEORY AND EXPERIMENT 

Because analytic solutions to these problems do not exist, it is not possible to make 
direct comparison of theory and experiment. Comparison with the numerical results 
is also not possible because: (i) the source locations used in the finite-difference methods 
do not correspond with the range of locations used in the experiments, (ii) the pulse 
waveform used in the numerical solutions differs significantly from that obtained 
experimentally, (iii) insufficient numbers of traces are presented by those using the 
finite-difference method to make direct comparison possible, and (iv) the 90” wedge 
case (the three-quarter space case) is the only case treated numerically [16] which 
corresponds to any of the cases treated here, and that one was computed only for 
the incidence angle 0 = -45”. Our inability to correlate the numerical and experi- 
mental data is due, mainly, to the fact that the primary concerns of those performing 
the numerical analyses were the stability and efficiency of the methods. These are 
important concerns and it is hoped that, now that the numerical methods have been 
shown to be stable and efficient, the numerical analysts will treat these problems in 
more detail so that comparisons can be made with the experimental data. 
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and 

L(z) = exp I-$ 1’ Tan-1 [ ‘“(l - $f’l(i;2m v2)1’2 ] 5 fJ z 1. (6) 
Y 2 

The expression for AL(B, t) can be simplified by noting that all its time variation is 
small over the time duration of a pulse; that is, if we let t = T + x/y, where 7 = 0 at 
the arrival time for PcR, we have 

(at/x - 1)1/Z = ([ - 1 + W/x)11* M ([ - 1)1/2, (7) 

art/x - cos 0 = (f - cos I3 + at/x) Fz3 4 - cos 8, (8) 

-w~lx) = L(rl + /w-d = L(v) (9) 

since all these three functions vary smoothly and little in value over the pulse duration 
(~7 psec). Recall that 71 = /3/r M 1.1 while [ = IX/~ m 1.9 and, for x = a = 15 cm, 
xjol SW 27 psec and x//3 m 46 psec; therefore, over the duration of the pulse (0 < T < 
7 psec) we have 0 < W/X < 0.26 and 0 < /3r/x < 0.14. Using the above approxima- 
tions, we have 

A@, t) 62 A*(B) = (( - l)l/2 (1 - 2v* co? e) D(@//q (10) 

A@) = (272 - 1) cos 8(1 - cos @l/*(1 + v cos e)l+(l + $‘/2, (11) 
where 

D(e) = (1 + cos 8)1/2 L(7$(-v cos 8)/2v(l - vz)1/z(5* - cos2 e). (12) 

Using these expressions and the reduced travel time, 7, we have 

for times near the arrival of PcR. The amplitude of the wave does not vary with dis- 
tance, as we would expect for a plane Rayleigh wave, and there are two components 
to the converted wave. The first component represents a reproduction in time of the 
incident P-wave waveform while the second represents a distortion of it. The latter 
time function, I/W, is the msociatedfunction or the Hilbert transform of the delta 
function. 

Figure 10 illustrates the distortion introduced by the presence of various amounts 
of the associated function. The top left waveform is the original function used to 
represent the experimental pulse. It is the second derivative of the Gaussian function, 
50 exp(--t*/lOO), or 

f(t) = [0.02t2 - l] exp(--t*/lOO). (14) 
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a=5 

FIG. 10. The waveforms, F(t), due to combining different ratios of the function f(t) and its 
associated function g(l); F(t) = [af(t) + g(t)]/(l + ~r~)*~~. 

The remaining waveforms are given by 

where 
F(t) = bf(O + gWl/(l + 41’2, (15) 

g(t) = f(t) * w  (16) 

and the asterisk represents a convolution [31]. In performing the convolution 
numerically, the singular behavior of h(t) = l/rrt at t = 0 must be taken into account. 
Analysis shows that the sampled version of &r(t) has the values -0.75, 0, -1-0.75 at 
the sample values -1, 0, +I, respectively; the remaining values are obtained from 
l/t. Smoothed representations of the sampled functions for f(t), &r(t) and their 
convolution, rg(t), are shown in Fig. 3. From this figure it is seen that convolution 
with h(t) produces a great deal of distortion and the resulting waveform looks some- 
what like the negative derivative of the original waveform. However, g(t) has more 
low-frequency content and less high-frequency content than the derivative of f(t). In 
Fig. 10, the waveform for 01 = 0 corresponds to the function g(t) and the waveforms 
go smoothly from f(t) to g(t) to -f(t) as 01 is varied from + cc to 0 to - 00. 

The amplitudes of these waveforms (labeled a, , a, , a, , and a4) have been determined 
and their values are given in Table I. They have been normalized to the major 
lobe of the Gaussian function and they will be used to compare the theoretical and 



382 GANG1 AND WESSON 

TABLE I 

Amplitudes as a Function of the Ratio a: = A,,‘& (See Fig. 10) 

a 

02 -0.000 0.445 -1.000 
10.0 -0.002 0.471 -0.995 

5.0 -0.004 0.491 -0.990 
2.0 -0.015 0.549 -0.958 
1.0 -0.033 0.608 -0.902 
0.5 -0.058 0.661 -0.832 
0.2 -0.083 0.703 -0.774 
0.1 -0.094 0.714 -0.752 
0.0 -0.106 0.736 -0.736 

-0.1 -0.118 0.752 -0.714 
-0.2 -0.133 0.774 -0.703 
-0.5 -0.178 0.832 -0.661 
-1.0 -0.246 0.902 -0.608 
-2.0 -0.326 0.958 -0.549 
-5.0 -0.396 0.990 -0.491 

-10.0 -0.419 0.995 -0.471 
-cc -0.445 I.ooo -0.445 

4 4 
___.. .~- 

0.445 
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0.396 
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FIG. 11. The theoretical normalized coefficients, A,(B)/uL( --Y cos 8) and A,(B)/aL( --Y cos e), 

of the input waveform and its associated function, respectively, for the PcR wave in the half-plane 
problem. 
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experimental results. The symmetrical character of these amplitudes is due to the 
symmetry of the originally assumed waveform. 

The coefficients Al(e) and AS(B), normalized to a constant times L(--vcos f?), are 
plotted in Fig. 11 for 0 < 0 < 180” and Poisson’s ratio equal to 0.25. This shows 
that different ratios of the original waveform and its associated function occur as the 
angle 8 is varied. A change in waveform as a function of 6 is noted in the experimental 
data. Figure 12 shows tracings of the experimental traces for incidence angles, 0, of 

IO” WEDGE 
PcR 

e=-“oo H 

l9= 0” 

8 = 60” 

FIG. 12. Tracing of representative traces obtained from the seismic model for the 10” wedge. 
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- 110, -50, 0, 30, and 60”. The change is particularly pronounced at B = 30”, near 
where the theory predicts the largest ratio of A1(8)/A,(B) for ~9 < 120”. These traces 
also show that the experimentally obtained waveform is similar to the assumed wave- 
form, f(t). 

Note that the waveform of the direct P wave, which is clearly seen in the traces for 
8 = 30 and 60”, is almost identical to the associated function of the PcR waveform 
in the traces for 0 = 0,60, and -50”. This is due to the fact that PcR has a waveform 
similar to the second derivative of the Gaussian function and it is mainly composed 
of the associated-function component of the P wave. This is consistent with the 
theory because the associated function of an associated function is the negative of 
the original function; in other words, the Hilbert transform of a Hilbert transform 
gives the negative of the original function [31]. Another way of saying the same thing 
is that the convolution of 11~~ with itself is equal to the negative of the delta function, 
%d, 

l/m * l/m = -6(T). (17) 

Apparently, the transducer emits a P-wave pulse whose waveform is similar to the 
associated function of the second derivative of a Gaussian function. 

Miles’ expressions for u(x, o-, t) are valid only for incidence angles, 0, lying between 
0 and 90” (and, by symmetry, between 0 and -90”). We have plotted the values for 
Al(e) and h(e) over the full range of 0 even though there may be some changes 
required for 8 > 90”. For example, a simple review of Miles’ analysis indicates that 
the negative values of Al(e) for 0 > 90” should be positive. There is some indication in 
the experimental data that this is the case (see Fig. 4). The function L(-v cos 0) was 
not included in the curves for Al(e) and AZ(B) in Fig. 11 because of its complex 
nature. The integral, In L(z), has been evaluated by Gaussian integration [32] using 
4-through 16-point formulas. It was found that a 12-point Gaussian integration gives 
five-place accuracy provided the integral is broken up into two parts, one from v to 
0.707 and the other from 0.707 to 1, and different transformations are used in each 
interval. The change in variable used in the first interval is (5 - v)lr2 and that used 
in the second interval is (1 - [)li2. These transformations are required because 
Gaussian integration gives accurate results if the integrand can be closely approxi- 
mated by polynomials; that is, the integrand should have continuous high-order 
derivatives over the integration interval. The above two transformations eliminate the 
infinite first derivatives of the inverse-tangent function at the two limits of integration, 
v and 1. 

Representative values of L(z) are given in Table II for -3-lj2 < z < 3-l’” which 
corresponds to 0 < 0 ,< 180”. It can be seen that L(z) is fairly constant for -3-1/2 < 
z < 0 (or 0 < 0 < 90”) and varies rapidly only for z > 0.8(3-l12) (or 0 > 145”). Its 
most rapid variation occurs near z :- 3-l/* (or 0 = 180”) and it has its maximum 
value there. However, note the value is finite (8.9656) and not infinite as indicated by 
Miles [8, Fig. 9, p. 511. Because of the behavior of L(-v cos e), the curves for Al(e) 
and A,(8) should give a good representation for the amplitude variation of PcR for 
angles between 190” and, if the extension of Miles’ equation is valid, for angles 
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TABLE II 

Values of L(z) = L( --Y cos e), Y = 1/31j2 

z/31/2 0 6%) L(z) 

-1.0 0 1.1373 
-0.8 36.9 1.1512 
-0.6 53.1 1.1684 
-0.4 66.4 1.1900 
-0.2 78.5 1.2180 

0 90.0 1.2559 
0.2 101.5 1.3101 
0.4 113.6 1.3942 
0.6 126.9 1.5442 

0.8 143.1 1.9006 
0.82 145.1 1.9669 
0.84 147.1 2.0450 
0.86 149.3 2.1385 
0.90 154.2 2.3978 
0.92 156.9 2.5881 
0.94 160.1 2.8536 
0.95 161.8 3.0328 
0.96 163.7 3.2624 
0.97 165.9 3.5727 
0.98 168.5 4.0305 
0.99 171.9 4.8365 
1.00 180.0 8.9656 

between &145”. The rapid variation of L(--v cos 8) at 8 = 180” means the amplitude 
of PcR would be larger than predicted by AI(e) and A,(B), but would still be zero at 
180” because of the finite value of L(-v cos 6) there. A zero amplitude for PcR was not 
measured at the wedge edge (at -170”) which should correspond to 19 = 180” for the 
half-plane problem. This may be due to two reasons. (i) The theoretical values are 
for a wedge angle of 0” while the experimental values were obtained for a wedge 
angle of 10”; however, it would be surprising if this small a change in angle makes 
that much difference. (ii) The receiving transducer has finite size and measures 
amplitudes from a small range of angles, approximately 0.5”, about the nominal 
value. The rapid increase in amplitude from 0 at -180” to finite values at smaller 
negative angles could account for the nonzero measured value. The function L(--v cos 6) 
produces the rapid increase in PcR for the source located near the wedge face (i.e., for 
6 s -170 and +180”). 

The sum of the peak-to-peak amplitudes (uz - a3 + a4 - a.J in Fig. 10 gives 
values that vary only between 2.89 and 2.50 for amplitude ratios, a, between co and 
0.5. This covers most of the range of amplitude ratios shown in Fig. 11, at least for 
angles between f170”. Therefore, over this range, the measured amplitude should 
vary approximately as [AI”(d) + ~&~(0)]~/~ L(- v cos 19). Values of this latter quantity, 
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TABLE III 

Theoretical Amplitudes for 0” wedge Normalized to 60” 

A= [A12(0) + A,“(6)]“” L( --y cos 0) 
[A12(60") + A,2(60")]1~2L(-v cos 60') 

0 (deg) A 

0 0.56 
15 0.65 
30 0.81 
45 0.95 
60 I .oo 
75 0.98 
90 0.93 

10.5 0.84 
120 0.73 
135 0.59 
140 0.58 
145 0.56 
150 0.50 
155 0.48 
160 0.45 
165 0.42 
170 0.35 
175 0.25 
180 0.00 

normalized to one at 60”, are given in Table III. These points have been plotted in 
Fig. 4 with the data for the 10” wedge angle. There is excellent correlation of the 
theoretical and measured values, especially considering that the theoretical values 
are for a 0” wedge. There is some asymmetry in the 10” wedge data and a better fit of 
the two sets of data would be obtained if the theoretical data were shifted +5”, 
corresponding to the line of symmetry for the model, and if the range of the theoretical 
data was contracted to & 175“ from & 180”. Considering the approximate nature of the 
comparison, it was not felt that these latter two “refinements” of the theoretical 
data were justified. In particular, there appears to be a small cusp in the experimental 
data near - 140” which does not have a counterpart in the theoretical data. This cusp 
may be due to experimental error; on the other hand, the theoretical results for a 10” 
wedge might show the same feature. 

SUMMARY AND CONCLUSIONS 

Experimental measurements of the amplitudes of PcR as a function of the incidence 
angle, 0, of the P wave have been obtained from two-dimensional seismic models 
for wedge angles 6, = 10, 30, 60, 90, and 120”. The measured values show the follow- 
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ing characteristics. (i) The PcR amplitudes show a minimum near 0 = 0” (the incident 
P ray is parallel to the upper wedge face), minima at 0 = 0, - 180” and at 180” (the 
latter is inferred from the data), and maxima near 0 = 190”. These results are 
consistent with those measured earlier [28] for 0, = 60 and 90”. (ii) The amplitudes of 
PcR decrease as the wedge angle increases to 120”. This is consistent with the fact 
that the amplitudes of PcR must be identically zero for all angles of 0 for 8, = 180”; 
that is, for a half space. (iii) The PcR amplitudes become less symmetric about 0 = 0 
as the wedge angle increases. 

The PcR amplitudes, observed on the top wedge face and due to P waves incident 
on the wedge tip, should be identical to the RcP amplitudes observed on the circular 
periphery of the model for a source of Rayleigh waves on the upper wedge face. This 
is a direct consequence of the principle of seismic reciprocity [33, 341. 

The experimental data for the 10” wedge have been compared with the theoretical 
results for the 0” wedge and very good correlation is observed, generally they are the 
same within AlO %. Considering the experimental error, about i5 %, and the fact 
that the theory is for a slightly different case, this is surprisingly good agreement. 

The converted wave, PcR, has two components; one is a reproduction of the 
incident P wave and the other is its associated function or Hilbert transform. The 
ratio of the amplitudes of these two components vary as the incidence angle is varied 
and this causes a change in wave shape for PcR as a function of 8. This waveform 
variation is found to exist in the experimental data and appears to have the largest 
effect near 30” (for the 8, = 10” case) and this is where the theory predicts a large 
variation. 

In addition, it is noted that the major component of the PcR wave is the associated- 
function one, both according to the theory for the 0” wedge and according to the 
measured waveform of the direct P wave in the lo” wedge case. 

No correlation of the experimental data with numerical, finite-difference solutions 
of these problems was made because there are not sufficient or adequate data to make 
one. It is hoped that presenting these experimental data will encourage numerical 
analysts to treat these problems in greater detail. 
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